arXiv:1405.1668v3 [g-bio.QM] 9 Oct 2014

Bayesian inference of time varying parameters in autoregressive processes
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In the autoregressive process of first order AR(1), a homogeneous correlated time series u: is
recursively constructed as u; = q ut—1 + o €, using random Gaussian deviates €; and fixed values
for the correlation coefficient ¢ and for the noise amplitude o. To model temporally heterogeneous
time series, the coefficients ¢; and o; can be regarded as time-dependent variables by themselves,
leading to the time-varying autoregressive processes TVAR(1). We assume here that the time series
u¢ is known and attempt to infer the temporal evolution of the ’superstatistical’ parameters ¢: and o.
We present a sequential Bayesian method of inference, which is conceptually related to the Hidden
Markov model, but takes into account the direct statistical dependence of successively measured
variables u;. The method requires almost no prior knowledge about the temporal dynamics of g:
and o; and can handle gradual and abrupt changes of these superparameters simultaneously. We
compare our method with a Maximum Likelihood estimate based on a sliding window and show

that it is superior for a wide range of window sizes.

I. INTRODUCTION

The autoregressive process of first order, recursively
defined as u; = q uz_1 + 0 €, represents the simplest
model of a correlated time series and is therefore being
used in many scientific or economic applications. A typ-
ical application in the natural sciences is the modeling
of discrete time random walks in real space, where the
random variable u; corresponds to the (vectorial) veloc-
ity of a particle at time t. In this case, the correlation
coeflicient ¢ is a measure of directional persistence, rang-
ing from antipersistent behavior at ¢ = —1, over non-
persistent behavior at ¢ = 0, to persistent behavior at
g = 1. The noise amplitude o > 0 then corresponds to
the diffusivity of the particle.

In the original form of the AR(1) process, the model
parameters g and o are constants, thus assuming tempo-
ral homogeneity of the underlying random process. How-
ever, over sufficiently long time scales, this assumption is
usually violated in most real world cases. For example,
considering the diffusion of a test particle in a liquid, the
temperature of the liquid might vary spatially, leading
to an effective temporal modulation of o as the particle
enters different regions. It is well-known that tempo-
ral heterogeneity of a correlated random walk can lead
to anomalous features, such as a non-exponential decay
of the velocity autocorrelation, or a non-Gaussian distri-
bution of displacements within a given time interval. In
physics, the explanation of anomalous statistical features
in heterogeneous random process by a superposition of
locally homogeneous processes has recently been termed
'superstatistics’ [IH4].

The natural extension of the AR(1) process to hetero-
geneous situations is the time varying autoregressive pro-
cess of first order, denoted as TVAR(1). In that case, the
model parameters (or ’superparameters’) ¢; and o; have
their own, deterministic or stochastic dynamics. This dy-
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namics is either known (for example, if the spatial tem-
perature profile of the liquid with the diffusing particle is
experimentally controlled), or it has to be inferred from
the measured time series u; alone.

In this paper, we are interested in the latter case and
present a method to extract the temporal evolution of g;
and oy directly from u;. Based on sequential Bayesian up-
dating, the method can be applied with only very limited
prior assumptions about the dynamical behavior of these
superparameters, yet allows for incorporating dynamical
models of the superstatistical process if available. Im-
portantly for many applications, the method is able to
detect sudden changes and slow dynamics of ¢; and oy
simultaneously.

Extracting the temporal evolution of the superparam-
eters can be even more revealing about a complex system
than the knowledge of the direct time series u;. For exam-
ple, in cases where u; describes the behavior of an agent,
temporal variations of the superparameters may reflect
changes in the environment of the agent, or changes in
its internal state.

Similar inference problems have been tackled by a va-
riety of methods, including the conceptually simple slid-
ing window analysis [5, [6], as well as more advanced ap-
proaches, such as recursive least squares [7] and basis
function approaches [8].

In this paper, we compare our proposed method to the
maximum likelihood estimation within a sliding window,
and evaluate the quality of parameter extraction using
simulated trajectories with known time traces of ¢; and
ot

II. METHOD
A. TVAR(1) and sequential Bayesian updating

We consider the measured time series {u; } of length N,
with t =0, ..., N — 1. The observations are connected via
the time-varying parameters {q;,0:} (t = 1,...,N — 1).
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The recursive relation is given by the TVAR(1) process:
Ut = G Ug—1 + Ot € , (1)

where ¢; denotes the noise term and is drawn from a
standard normal distribution.

Our proposed method can be applied to the general
case, where each measurement u; is a vector, and ¢; and
oy are matrices. However, in this work we are particularly
interested in the special case where u; is a velocity vector
of a particle, ¢; and o, are scalars, and the components
of the noise term are assumed to be iid. Note that these
restrictions imply local isotropy of the random process.

In order to infer the values of the superparameters
of the TVAR(1)-process, we need to state the likeli-
hood function, denoted by L, describing the probability
of the measured values {u;}, given the parameter val-
ues {q,0.}. In the case of the first-order process dis-
cussed here, the likelihood can be factorized into ’one-
step’ terms, since the current value u; only depends on
the previous value u;_1, apart from the model parame-
ters:

2

L({us}) = p({us}{gs, 0:}) = p(uo) | [ p(uslar, o, ue—1)

- @

where p(ug) can be seen as a constant, as it plays no fur-
ther role in the inference process. The one-step-likelihood
follows directly from Eq. :

L(Ut§ Utfl) = p(ut|Qt, Ut;“tfl) =

_ 1 (us — Qtut—1)2 3
- (2mo?)m/? P 20?2 » )

where m is the dimensionality (number of vector com-
ponents) of u;. This term provides a model-specific de-
scription of the direct correlation between observed (mea-
sured) values. Note that at time ¢, the previous mea-
surement u;_1 is known. Therefore, it is not treated as
a random variable but rather as a constant. In the no-
tation above, this constant is separated by a semicolon.
The Bayesian inference scheme devised below is based on
this time-dependent likelihood term and can thus be seen
as an extension to the Hidden Markov Model (HMM), in
which all observations are assumed to be independent [9].

In the general Bayesian framework, the parameter
estimates are expressed by their joint posterior distri-
bution Po ({¢:,0:}) = p({gt,0¢}|{us}), which is gained
by multiplying the likelihood with a prior distribution
Pr({g:,0¢}) = p({q, 0+}), reflecting our knowledge of the
parameters before seeing the data:

Po ({q1,01}) oc L ({ue}) Pr({qi,01}) (4)

While computing this potentially very high dimen-
sional posterior distribution is feasible using approximate
Markov Chain Monte Carlo methods, the problem of

finding an appropriate prior that is flexible enough to
account for sudden changes as well as slow parameter
dynamics remains. In order to evade this difficulty, we
propose an iterative inference algorithm, which incorpo-
rates the different aspects of the parameter dynamics at
every time step.

Using the one-step likelihood term, the Bayes scheme
can be stated for a single time step, given an appropriate
prior for the parameters at time ¢:

Po (qi,0¢) o< L (ug;ue—1) Pr(qe,o¢) . (5)

While the likelihood function in Eq. describes the
relation of subsequent observed values, the prior distri-
bution Pr(g:,0t) = p(q:, 0¢) represents our belief in the
parameter values at time t before seeing the correspond-
ing data point u, and allows us to incorporate the ex-
pected temporal behavior of the latent superparameters.
This is done using a transformation K, which relates the
computed posterior distribution of the previous time step
with the current prior distribution:

= K (Po(qi—1,0¢-1) ) - (6)

The structure of the proposed model can be directly com-
pared to the known HMM. This analogy is illustrated in
Fig. [I] where K takes the role of the state transition ma-
trix, while L; can be interpreted as a generalized obser-
vation matrix with the important difference that it also
takes into account the previous observation (red line).
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FIG. 1. Tllustration of the conceptual relation of the pro-
posed model to the known Hidden Markov Model. The direct
statistical dependence of the measured values is depicted in
red.

In practice, there is often only little knowledge about
the underlying dynamics of the superstatistical parame-
ters q¢, o¢. It is therefore crucial to find a transformation
K which on the one hand keeps the restrictions on the
evolution of these time-varying parameters as small as
possible and on the other hand minimizes the estimation
error. Here, we propose a two-step transformation K
to form the current prior distribution from the previous
posterior:

K:KQOKl, (7)

where the first transformation introduces a minimal
probability for the current value of the parameter-tuple,

Ky : plgt,00) — Maz [pmin, p(qt,0¢)] - (8)



The mapping ensures that there is always a small prob-
ability even for parameter values that deviate strongly
from the preceding ones, allowing the method to detect
abrupt changes of the correlation coefficient and/or noise
amplitude.

The second transformation Ko describes a convolution
of a probability distribution with a box kernel, denoted
B:

Ka(pla,00) ) = (B * p) (1, 01) 9)

where ( * ) denotes the convolution and the two-
dimensional box kernel is defined as

B(x1,22) = O (R = [a1]) ©(R—[a2]) . (10)

Here, R is the radius of the kernel and ©(z) is the Heav-
iside step function. This transformation can be inter-
preted as a moving average filter, blurring the probabil-
ity distribution given as the argument. Applied to the
posterior distribution of (g;—1,0¢—1), the transformation
K thus allows for an accurate detection of slow param-
eter dynamics. It is important to note that the joint
posterior distribution of the parameters is normalized at
every time step, since the mapping K does not preserve
normalization.

Figure [2| shows the effect of the transformations K;
and Ky on a generic probability distribution. For pre-
sentation reasons, we only show the transformation of an
univariate distribution.

p(a) Ki(p()) Ka(K1(p(a)))
-1 0 1 -1 0 1 -1 0 1
q q q
FIG. 2. Transformation of a probability distribution using

the mapping K. Here, K; introduces a minimal probability
of realizing any parameter value, while K5 ”blurs” the distri-
bution.

B. Bi-directional inference

The method described above infers the time-varying
superstatistical parameters in an iterative way, moving
forward along the time axis. The latent time series,
{qt, 0+}, thus inherits a property from the measured val-
ues, {us}, that is characteristic for the latter: the cur-
rent value can only depend on past values, not on future
ones. While this causality condition on the observable
time series follows directly from Eq. , it imposes an
unnecessary restriction on the latent time series — and
therefore on the parameters we want to estimate.

In contrast to the dynamics of u;, described by the
TVAR(1) process, the dynamics of the superparame-
ters, described by the mapping K proposed above, is

reversible. Formally, this property is called detailed bal-
ance, c.f. [10]:

p((CIt,Ut) =1 | (qtflao—tfl) :j) =
p((g,00) =7 | (q-1,00-1) = 1) . (11)

The equation above holds for K, since the proposed map-
ping is symmetric around the current parameter values,
(qt, 0¢).

Here, we propose an inference algorithm that makes
explicit use of the reversible dynamics of the superstatis-
tical parameters, extending the strictly forward moving
procedure described above.

In order to estimate the local persistence and noise
amplitude at time ¢, we first need to compute a prior
distribution. Moving forward in time, the prior is gained
by a%)g[)lying K on the previous posterior distribution, see
Eq. :

Pr’ (qp,00) = K (PO (g-1,001) |, _., > ;o (12)
op_1=0¢

where the upper index F' indicates the direction in
time, forward. Note that for clarification, we denote
the posterior as p(gi—1,0¢—1|Lt—1), which is equal to
p(qi—1,01—1|us—1,us—2). Similarly, we can compute a
prior of the parameters based on future values, by start-
ing the inference process using the last likelihood, Ly _1,
and moving backwards in time. It is important to note
here that we use the same one-step likelihood functions
as above, so that the observable values still only depend
on past values. This backward-prior is computed using
the following iterative scheme:

PrB (Qt; Ut) = K <PO (qt+1,0t+1) P > . (13)
ot—1=0¢

Applying the one-directional sequential updating proce-
dure in both directions, we now have two independent
priors that can be combined with the likelihood at time
t, in order to get the bi-directional posterior distribution
of the superstatistical parameters:

Po(gs, 0¢) o< Pr¥(qs, 04) PrP(qy, 00) Llugiug—1) , (14)

which has to be properly normalized. The estimates of
q: and o; thus make use of all available data. While this
improves estimation quality, it also inhibits an on-line
implementation of the algorithm. The proposed inference
scheme is illustrated in Fig. [3

C. Grid-based implementation

Since the iterative application of K renders the ana-
lytic treatment of the posterior distributions intractable,
we rely on a grid-based implementation of the described
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FIG. 3. Tlustration of the iterative, bi-directional inference
of the parameters (g, o).
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inference scheme. The parameter space, (g,0), is dis-
cretized in equally spaced points, resulting in a Ny x N,-
grid:

(111,01) (Q1,U2) (111701\/(,)
(q2,01)  (gq2,02) (g2,0n,,)

. . . (15)
(an,: 1) (angs02) -+ (any,on,)

Subsequently, our current belief of the value of the su-
perparameters can be described by a probability mass
function, given as a (Ny X N, )-dimensional matrix:

(P (at:0¢))m =P (@ = Gn 0t = 0m) . (16)

With the likelihood L discretized in the same way, the
computation of the posterior from the prior distribution
and the likelihood reduces to a component-by-component
multiplication of the corresponding matrices.

D. Maximum Likelihood estimate within sliding
window

In order to assess the performance of the method pro-
posed above, we provide a short discourse of a simple
alternative method to analyze potentially heterogeneous
time series, namely the sliding-window analysis based on
a Maximum Likelihood estimation.

Assuming a homogeneous AR(1)-process for times ¢/
within the interval Iy = {t — w/2,...,t + w/2}, centered
around some point in time ¢, with persistence ¢; and noise
amplitude oy, one can state the log-likelihood for these
parameters as follows:

log p ({ut'}t/ejt gt Ut) X

(w — gy )” 2
> 207 log (27a}) | . (17)

t'ely

Note that we can ignore the probability of observing
Up=t—2_1 because it does not affect the subsequent max-
imization of the log-likelihood function.

Maximizing Eq. with respect to ¢; and o, yields
the following Maximum Likelihood estimators:

G, = Zt’e[t

t — )
Zt'elt Ugr—1-Up -1

Ugr Ugr—1

(18)
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where ( . ) denotes the dot product. The estimator for
the noise amplitude can be stated as

1

Z (Ut’ - (ftutul)Z

t'el

; (19)

and depends on the estimate for ¢;. In order to analyze a
potentially heterogeneous time series using these estima-
tors, one partitions the data into overlapping segments
of length w — thus the term ’sliding window’ — and is able
to estimate the local persistence and noise amplitude.

Note that in the sliding window approach, one loses
w — 1 of the ¢; and o; estimates, whereas the Bayesian
method yields N — 1 estimates for N data points. This
can be a significant advantage for small data sets.

Furthermore, the assumption of constant parameters ¢
and o within each window of length w represents a great
weakness of the sliding window approach, since it cannot
be fulfilled for truly heterogeneous time series. Finally,
the choice of the 'window size’, w, strongly affects the
resulting reconstruction of the time-varying parameters

(Fig. H).
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FIG. 4. Estimated parameter values of the local persistence
(top) and noise amplitude (bottom) for different window sizes,
together with the true parameters values (dashed). Small
window widths result in a fast detection of abrupt parame-
ter changes but exhibit strong fluctuations. Large window
sizes provide smoothly changing parameter estimates with
only small noise, but are unable to detect sudden changes.



III. RESULTS

We subsequently assess the estimation quality of the
proposed Bayesian inference scheme by applying the grid-
based implementation, introduced in Sec. [[TC] to a num-
ber of simulated two-dimensional trajectories showing
different temporal behavior of the superparameters.

Here, the parameter space (g¢, 0¢) is discretized using a
200 x 200 dimensional quadratic grid, with the following
boundaries:

—15< g <15, 0<oy <3 Vit (20)
The minimal probability for reaching every point in the
parameter space, pmin (cf. Eq. ), is set to pmin =
10~7. In the discrete implementation of the algorithm,
the box kernel used to cover slow parameter dynamics is
chosen to be a 5 x 5-matrix with equal values, 1/25. The
radius R, as defined in Eq. @D thus equals R = 26, with
d = 3/200 being the distance between to adjacent points
on the parameter grid.

A. Regime-switching process

As a first demonstration of the proposed inference
method, we simulate two-dimensional trajectories based
on piecewise constant parameters. This so-called regime-
switching process exhibits abrupt changes of both, per-
sistence and noise amplitude. Here, the time-varying pa-
rameter values are chosen as follows:

(—0.5,0.7) for 0 < ¢ <400
(0.3,1.5) for 400 <t < 700
(0.9,0.5) for 700 < t < 1000

(gt,00) = (21)

Figure [5| shows the inferred parameter series of the per-
sistence (top) and noise amplitude (bottom) for 20 sim-
ulated trajectories, using the grid-based implementation
of the bi-directional inference algorithm as described in
Sec. [[IC] In this case, the algorithm produces an im-
mediate response to the abrupt parameter changes. In
contrast, using the sliding-window approach, the chosen
window width limits the temporal response to an abrupt
change of parameter values (see Fig. .

Since the Bayesian method naturally preserves the
joint parameter distribution at every time step as a
measure of how certain the estimates actually are, we
can compute the time-averaged posterior distribution,
(Po(g¢, 01)),, for the analyzed trajectory. Figure [6]shows
the time-averaged posterior distribution corresponding to
the estimated parameter values shown as a red line in Fig.
In this specific case, three parameter regimes appear
as clearly seperated. General cases with mutually merg-
ing regimes, corresponding to overlapping peaks in the
probability distribution, can be described as well.
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FIG. 5. Inference of piecewise constant parameter values
(black). Orange lines show inferred parameter values of per-
sistence (top) and noise amplitude (bottom) for 20 realiza-
tions of the TVAR(1) process using the true parameter val-
ues.

FIG. 6. Time-averaged posterior distribution of a single re-
constructed parameter sequence with piecewise constant pa-
rameter values. The distribution shows the three distinct
peaks coinciding with the parameter regimes defined in Eq.
[2T] while the width of each peak incorporates the uncertainty
of all estimates over time.

B. Linearly changing parameter values

In contrast to the abruptly changing parameter values
investigated above, this example shows the estimation



of local persistence and noise amplitude values which
change at a piecewise constant rate. The change in
parameter value per time step, Aq¢ = ¢+1 — ¢ and
Ao = o441 — 0y, respectively, are chosen as follows:

(0,0) for 0 <t <100
(Ag. Ao = J (0:003,0.0025) for 100 < ¢ <500

’ (—0.003,0.0025) for 500 < t < 900
(0,0) for 900 < ¢ < 1000

(22)

The true parameter values (dashed) are shown alongside
estimated ones (red and gray lines) for multiple realiza-
tions of the process in Fig. [7] As for the regime-switching
case shown above, we compute the time-averaged poste-
rior distribution of a single series of reconstructed pa-
rameter values (corresponding to the red line in Fig. E[)
The resulting distribution, displayed in Figure [8] clearly
captures the predefined correlations between ¢; and oy.
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FIG. 7. Inference of linearly changing parameter values

(black). Orange lines show inferred parameter values of per-
sistence (top) and noise amplitude (bottom) for 20 realiza-
tions of the TVAR(1) process using the true parameters val-
ues.

C. Sinusoidal parameter changes

In the case presented below, we assume a sinusoidal
evolution of the process parameters. A phase shift for
both parameters at different times shows the response of
the algorithm to an abrupt change of only one parame-
ter. The time-varying persistence and noise amplitude,

FIG. 8. Time-averaged posterior distribution of a single
reconstructed parameter sequence with linearly varying pa-
rameter values. The distribution accurately reproduces the
correlations between persistence g: and noise amplitude o:.

respectively, are parameterized as

_ J 0.7sin ($32t) for 0 <t <600
=\ 0.7sin (X + 235 (¢ — 600)) for 600 < ¢ < 1000

(23)

0.8+ 0.7sin (—F + 1o55t)

for 0 <t <500
0.8 = 0.7sin (=3 + 757 (t — 500))

for 500 < ¢ < 1000

(24)

Ot =

Figure [0 shows the true parameter values together with
inferred ones, while Fig. displays the time-averaged
posterior distribution corresponding to the red line in

Fig. [0

D. Mean squared error ratio

Given known parameter values ¢; and oy, the mean
squared error (mse) of the parameter sequences is used
to assess the quality of the estimations produced by the
competing methods:

mse ({ar}, {a) =y 30 (@ —@)* . (29)

where N denotes the length of the parameter sequence.
The same formula applies to a series of noise amplitude
values {o:}. The estimates of the Bayesian algorithm are
denoted ¢2 and 6P. Estimations are also computed by
the ML approach with a sliding window of various width

~ML(w) ~ M L(w)

w, denoted ¢, and &, .
In order to show that the Bayesian approach is indeed
widely applicable, we compute the ML estimates using
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FIG. 9. Inference of sinusoidal parameter changes (black).

Red and gray lines show inferred parameter values of persis-
tence (top) and noise amplitude (bottom) for 20 realizations
of the TVAR(1) process using the true parameters values.

FIG. 10. Time-averaged posterior distribution corresponding
to sinusoidal parameter changes.

a variety of window widths w € {3,5,...,201}, and sub-
sequently calculate the ratio of mean squared errors of
both methods, denoted r. Here, we add up the mean
squared errors of both, persistence and noise amplitude.
The ratio thus compares the Bayesian estimates to the

ML estimates, depending on the chosen window width:

r({a}{de}, {od}, {6e}50) =
_ mse({g:},{G"}) + mse({o:}, {67}

mse({Qt}v {ét]\/IL(w)}) + mse({at}7 {&i\/[L(w)}) ’
(26)

A mse-ratio smaller than one thus indicates a smaller es-
timation error for the Bayesian approach, compared to
the ML approach. Figure [T shows the mean value and
standard deviation of r for all three test cases, based on
all 20 trajectories of each case. On average, the Bayesian
method attains a smaller mean squared error than the
sliding-window approach, regardless of the chosen win-
dow width.

IV. SUMMARY AND OUTLOOK

In this paper, we have presented a new method to infer
the time series of the hidden parameters ¢; and o; in a
TVAR(1) process, u; = q; ut—1 + ot €, from the given
time series of the random variable u;. We have compared
the method to a Maximum Likelihood estimate of ¢; and
o within a sliding window and demonstrated that our
method is superior in reconstructing surrogate data sets
for a wide range of window sizes.

As our proposed method is based on the Bayesian
framework, the possible values of the hidden parameters
are for every time point ¢ described by a joint proba-
bility distribution p(g:,o¢), rather than commiting to a
definite point estimate. While such a point estimate can
be computed directly from p(gq, o), the width of the full
distribution provides a built-in time-dependent measure
of certainty for the inference process. Using a grid-based
representation of p(gs, 0;), no restrictions need to be im-
posed on the form of the distributions. In particular, mul-
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FIG. 11. Mean squared error ratio and corresponding stan-

dard deviation plotted over the window width of the Maxi-
mum Likelihood approach for all three cases discussed above.
Values of r < 1 denote a smaller mean squared error of the
Bayesian method, compared to the sliding window.



tiple peaks can occur in p(g:,0¢) when it is momentary
uncertain whether the hidden parameters have jumped
to a new pair of values.

The time-averaged distribution (Po(g¢, 0+)), is another
interesting quantity, as it summarizes the dynamics of the
hidden parameters and may be used to identify different
regimes, or clusters, in parameter space. Such regimes
may be distinct, i.e. separated from each other by broad
borders of vanishing probability, or partially overlapping.
In the latter case, inference algorithms that assume a set
of discrete hidden states, such as Hidden Markov Models,

often fail, while our proposed method makes no assump-
tions about the distribution of hidden parameters.

Finally, we would like to mention that our method
could be taylored to specific cases, potentially resulting
in an improved performance. In particular, we have used
so far a Kernel K that simultaneously accounts for slow
gradual changes of the hidden parameters (part K3) and
for arbitrary far abrupt jumps (part K). If more detailed
information were available about the temporal evolution
of the hidden parameters, this could be directly incorpo-
rated into the shape of the Kernel.
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